shkolageo.ru 1


Модели трендов в системной торговле

  • Александр Горчаков

  • управляющий активами ИК Спектр-Инвест,

  • создатель и соавтор сайта «Как стать трейдером?» (http://www.howtotrade.ru)


«Торговые роботы» и «системный трейдинг»

  • Настоящая конференция называется «Роботы в биржевой торговле», а потому начну свой доклад с небольшого введения, посвященного «торговым роботам».

  • «Торговый робот» в общем случае представляет из себя программу, состоящую из двух блоков алгоритмов, решающих, вообще говоря, разные задачи:

  • - алгоритмы генерации сигналов покупки-продажи;

  • - алгоритмы исполнения на бирже сигналов, генерируемых первым алгоритмом.



Тезисы к классификации торговых систем

  • Торговые системы можно разделить на:

  • системы, ориентированные на рост или падение цены актива;

  • системы, ориентированные на рост или падение «волатильности» (размаха колебаний) цены актива;

  • системы, ориентированные на сходимость спреда между ценами на разные активы (в данном случае мы подразумеваем, что базовый актив и производные инструменты от него являются разными активами).

  • Отметим, большинство опционных стратегий, часто относимых к отдельному типу, при более детальном рассмотрении на самом деле относятся к одному из трех перечисленных типов систем.


Системный трейдинг. «Трендовые» системы «лонг».

  • Купил, выросло, начало падать – продал

  • Купил, упало до «стоп-лосса» – продал


Системный трейдинг. «Трендовые» системы шорт.

  • Продал, упало, начало расти – купил

  • Продал, выросло до «стоп-лосса» – купил



Сложности на пути построения системы

  • Однако за внешней простотой схемы «трендовых» торговых систем стоит серьезная сложность задачи выявления таких точек входа в позицию, при которых эквити торгового счета по соотношению «доходность-риск» значительно бы превосходила «купил и держи» для системы «только лонг» и «продал и жди» для системы «только шорт» (как отмечалось в моем докладе на конференции «Вопросы системной торговли» в 2004-м году, сравнение системы лонг+шорт с «купил и держи» - некорректно).

  • Простые решения в данном случае часто «ведут в тупик». Например, давно показано, что простейшая система «только лонг», основанная на процентном отскоке от локальных минимумов и процентном стоп-лоссе для многих ликвидных акций из S&P500 не превосходит «купил и держи» по соотношению доходность-риск.


Тезисы к классификации моделей трендов

  • Наиболее часто используемые модели трендов в торговых системах можно разделить на три группы:

  • кусочно-монотонные, предполагающие, что в ценах присутствуют достаточно длительные временные отрезки, на которых цены представляют композицию монотонной непрерывной функции от времени и случайного блуждания, в общем случае с нестационарной дисперсией;

  • кусочно-ступенчатые, предполагающие, что в ценах присутствуют достаточно длительные временные отрезки, на которых цены представляют композицию ступенчатой монотонной функции от времени и случайного блуждания;

  • минимаксные, предполагающие, что растущий тренд характеризуется наличием в минимумах цен композиции монотонно растущей непрерывной функции от времени и случайного блуждания, а падающий - наличием в максимумах цен композиции монотонно падающей непрерывной функции от времени и случайного блуждания.

  • Ниже в модельных примерах мы рассмотрим наиболее распространенный в финансовой математике случай, когда для логарифмов цен вышеупомянутая композиция представляет собой сумму значений. Отметим, что в этом случае кусочность тренда в совокупности с ацикличностью времен монотонности и нестационарностью дисперсии случайного блуждания согласуются с результатами многочисленных исследований, в которых показано, что первые разности логарифмов цен закрытия таймфреймов представляют собой временные ряды с автокорреляционной функцией близкой к нулевой и одномерными распределениями с «тяжелыми хвостами».


Пояснения к графикам

  • В нижеприведенных графиках всюду в качестве монотонных непрерывных функций для логарифмов (!) цен взяты линейные функции. В более сложных моделях монотонных функций, на мой взгляд, нет практической необходимости в силу известной теоремы математического анализа о приближении любой непрерывной функции кусочно-линейной. В силу относительной краткосрочности участков монотонности, вряд ли случай более сложных монотонных функций может быть статистически отличим от кусочно-линейного случая с возможно более короткими трендами.

  • Отметим, что для кусочно-монотонной модели в этом случае переход от цен к первым разностям логарифмов приводит к случаю кусочно-ступенчатой функции, который отличается от кусочно-ступенчатой модели тренда только отсутствием положительной корреляции приращений «скачков» между «ступеньками». Поэтому для этого случая наряду с модельным графиком цен приведен график первых разностей логарифмов цен.

  • Коридоры построены в виде двух стандартных отклонений случайного блуждания, дисперсия которого на отрезках монотонности смоделирована постоянной, но различной для разных отрезков монотонности.

  • Стрелки на графиках представляют собой один из возможных способов построения сигналов «трендовых» торговых систем, основанных на пробое «коридоров волатильности». Отметим, что в случаев известной дисперсии случайного блуждания этот способ является оптимальным. Однако на практике, дисперсия случайного блуждания нам неизвестна и потому при построении сигналов «трендовых» торговых систем возможны варианты.



Кусочно-линейная модель тренда в логарифмах цен



Первые разности логарифмов цен в кусочно-линейной модели

Кусочно-ступенчатая модель тренда



Минимаксная модель тренда (кусочно-линейный случай)



Общие задачи построения «трендовых» систем

  • Как мы отмечали выше, если бы дисперсия случайного блуждания на каждом участке монотонности была известна, то оптимальной «трендовой» системой была бы система, основанная на пробое «коридоров волатильности». А единственным оптимизируемым параметром системы должен был бы стать масштабный коэффициент при стандартном отклонении случайного блуждания.

  • Таким образом, общими задачами при построении оптимальных «трендовых» торговых систем во всех трех моделях являются задачи оценки среднего и «коридора волатильности» на постоянных «ступеньках». Решение задачи оценки среднего известно – это взятие простого скользящего среднего на отрезке постоянства самих цен или первых разностей их логарифмов. Сложность в данном случае представляет само определение этого отрезка по времени.

  • В то же время без дополнительных предположений о законе изменчивости дисперсии случайного блуждания задача оценки его нестационарной дисперсии неразрешима. В первом приближении можно воспользоваться гипотезой о постоянстве дисперсии и постепенно улучшать систему путем ведения моделей типа медленной изменчивости дисперсии, а также известной ARCH-модели и ее многочисленных модификаций (в своих системах я использую кусочно-постоянную модель волатильности).


Опыт применения

  • Как показал мой личный опыт разработки «трендовых» торговых систем с проскальзованием 0,2% на операцию или 0,4% на сделку (такое проскальзование сразу выводит нас на использование систем только со средним временем в позиции больше двух дней), кусочно-линейная модель более эффективна, чем кусочно-ступенчатая, для цен (в формате OHLC) ликвидных акций взятых на таймфреймах от одного часа и до одного дня.

  • В то же время построение сравнимых по эффективности систем с тем же проскальзованием, но с использованием ценовых данных более краткосрочных таймфреймов привело меня к необходимости использования кусочно-ступенчатых моделей, в рамках которых свойства первых разностей логарифмов цен уже существенно отличаются от случая кусочно-линейной модели для логарифмов цен.

  • В основе минимаксных моделей лежит факт наличия, пусть и небольшой, но устойчивой положительной корреляции в приращениях первых разностей логарифмов минимальных и максимальных цен дня. Однако задача построения «трендовых» систем в рамках этой модели в моем случае находится в стадии разработки и можно говорить лишь о некоторых предварительных результатах, позволяющих надеяться на успех в этом направлении.


Вместо заключения

  • Признание наличия в ценах трендов влечет за собой и иной взгляд на модели «справедливой цены» опционов.

  • Действительно, в рассмотренных трендовых моделях дисперсия цен или их логарифмов распадается на сумму двух дисперсий – дисперсии случайного блуждания (в общем случае нестационарной) относительно тренда и дисперсии тренда, возникающей в силу его кусочности. И хотя для европейских опционов с относительно далекими сроками погашения, а также для опционов «сильно в деньгах» и «сильно вне денег», в силу центральной предельной теоремы для сумм слабозависимых случайных величин, модель Блэка-Шоулза, основанная на модели геометрического броуновского процесса для цен (или обычного броуновского процесса для логарифмов цен), сохранит свою актуальность. Для американских опционов или европейских опционов «слегка вне денег» и «слегка в деньгах» с близкими сроками погашения учет кусочности тренда приводит к результатам, существенно отличающимся от классических. Эти результаты, в частности, позволяют объяснить известную «улыбку волатильности».

  • Но это уже тема для другого доклада. Спасибо за внимание!