В треугольнике Авс угол С=90,АВ=17, tg=5/3.,Найдите высоту СН. ПОЖАЛУЙСТА!!! ​

Тангенс А равен ВС/АС, то есть ВС: АС = 5:3. Пусть АС = 3х, тогда ВС = 5х.  По теореме Пифагора, (3х) ^2 + (5х) ^2 = 289   34х^2 = 289  х=корень (8,5), значит АС=3*корень (8,5), ВС = 5*корень (8,5).  Площадь треугольника АВС равна 1/2 * АС*ВС = 1/2 * 3корня (8,5)*5корней (8,5)=63,75.  С другой стороны, площадь равна 1/2 * АВ*СН, то есть 63,75=1/2 * 17*СН.  СН = 63,75*2/17=7,5.

Оценить ответ

Загрузить картинку
Не нравится ответ?

Если ответ на твой вопрос отсутствует, или он не полный, то рекомендуем найти информацию через поиск на сайте.

Найти другие ответы
Новые вопросы и ответы